DTAPI

|Overview and Data Formats

REFERENCE Jeiklec

Jan 2024

DTAPI Manual
Overview and data formats

deklec

Table of Contents

1. General Descriptionccceveeiiiiiiiiiiiinnnnennns 3
1.7. What is DTAPIZ ..o 3
1.2. Documentation OVErviewcceeeeeeeeeeeeeeeennen... 3
1.3. DTAPI Object Model......ccovveeiiiiiiieeeeiiiiiiieeeene 3
1.4. List of Abbreviations and Glossary of Terms......... 4
1.5. Referencescooeeeviiiiieeeeeeiiiiieee e 5
2. Using DTAPI in your Project...........cccvvunneennn.n. 6
2.1. DTAPI on the Windows Platform...........ccccccveene. 6
2.2. Using the Static Link Librarycccocooviiieiiiinnniin. 6
2.3. Using the .NET Assemblyccccoeeeeieiiiiinnnnnnnn. 7
2.4. DTAPI on the Linux Platform.........ccooeiiieniiinenn, 7
3. DTAPI BASICS ..evveiivieieiiiieneeiiiieeeetiiieeeeeiie e 8
3.1. Attaching to a Devicecuvvvvieeeeeeiiiiiiiieeeeeeees 8
3.2. Attaching to a Channel.........ccccoeeeiiiiiiiieeeeeens 9
3.3. Initialising a Channelcccoeeeeeiiiiiiieeeeees 9
3.4. Receiving Data....ccoovuiiiiiiiiiiiiiie 9
3.5. Transmitting Datacoeeiiiiiiiiiiiii 10
3.6. Example Code for a Simple Stream Player......... 11
4. Capabilities and I/O Configuration 13
4.7, Introductionooeeeiiiiiiie i 13
4.2, Capabilitiescooveveiiiiieeiiiiiiiee e 13
4.2.1.1/0O Capability Groupsccceeeveeieeeiiieeeeee. 14
4.2.2. Standard Capability Groupsceeevvveeennnee. 14
4.3. 1/0O Configurationccceveieeeeiiiienieeeen 15
4.3.1. SetloConfig and GetloConfig.........ccevuveeennnee. 15
4.3.2. Relation to Capabilities.........ccceveueeeenieeennnee. 15
4.3.3. SetloConfig Variants..........ccceeeeerieeeeniieeeenne. 15
5. DTAPI Concepts .cc.uuveeeivueneeiiinneeeiiieeeeeiiiee 17
5.1. Getting StOHSHCS ...uuuiiii 17
5.2. Transmit on Timestampcoevviiiiiiiieae. 17
5.3. SDI Genlock Supportccoceeeiiiieeeeeeiiiiiieeeeen, 18

5.4. Vital Product Data (VPD)eeeieeiniiiiiiiiieeeees 19
6. MUlti-PLP EXtensions............cceevvvvvniieenneennnns 20
6.7, LICENSING - 20
6.2. Multi-PLP Object Model........ccoeveiiiiiiiiiiiieeiis 20
6.3. Attaching to a Multi-PLP Modulator.................... 21
6.4. Virtual Channels........coooeeviiiiiieeiiiiiiee e, 21
6.5. Streaming MPLP Data ... 21
6.6. Complete Examplecccevvvveeieeeiiiiiiiieeeeeees 23
7. Advanced Demodulator API......................... 30
7.0, Introduchion......ceee e 30
7.2. Streaming Modeloovviiviiiiiiiiiiiiiiiiiiiiiiiiias 30
7.3. LICENSING .cciiiiiiiiiieeeee e 30
7.4. Advanced Demodulator Object Model............... 31
7.5. Attaching to an Advanced Demodulator 31
7.6. Virtual Input Channel — User-Supplied I/Q Samples
.. 31
7.7. Receiving PLP Data and Constellation poins....... 32
7.8. Retrieving STOHSHCS ..uuevvveeeeeeiiiiiiiiceceeeee 34
7.9. Set Generic Demodulation Parameters 34
8.SDloverIP......ccoveiiiiiiiiiiiieee e 35
8. 1. OVEIVIEW . 35
8.2. Using SDI-over-IP with DTAPIc.ovveiieeennnnn. 35
8.3. SDI Transmituueeeeii e 36
8.4. SDI RECEIVE ... 37
9. Definition of data formatscccceeeeeeen. 38
9.1. Generic Stream Encapsulation (GSE) Packet....... 38
9.2. L.3 Baseband Frame..........ccooviieieiiiiiienieee, 39
9.3. SDI = 10-bit Format......cccvvvveiiieeiiiiiiiieee e, 42
9.4. SDI — 8-bit Formatccccvvviiiieeeeiiiiiiieeee e 43
9.5. SDI — Huffman-Compressed...........ccccceevniuernne. 44
9.6. Transparent Modeccceeeiiiiiieiiiiieeeee, 46
9.7. Transmit on Timestampcccceeeiiiiiiieee 47

Copyright © 2024 by DekTec Digital Video B.V.

DekTec Digital Video B.V. reserves the right to change products or specifications without notice.
Information furnished in this document is believed to be accurate and reliable, but DekTec assumes
no responsibility for any errors that may appear in this material.

DTAPI Manual
Overview and data formats .E n m

1. General Description

1.1. What is DTAPI?

DTAPI is an acronym for DekTec Application Programming Interface, an API for controlling DekTec
PC add-on hardware (PCle cards and USB devices) and reading and writing data to it. DTAPI is part
of the DekTec SDK, which also contains device drivers, documentation, example code, etc.

DTAPI enables application programs to access the functions of DekTec devices at a higher level of
abstraction than would be possible using direct device-driver calls. Nonetheless, it allows efficient
access to nearly all hardware features.

From a technical point of view, DTAPI is a C++ library with an object-oriented interface that links to
a user application. The DTAPI library uses three device drivers (Dta, Dtu, DtaNw,) for accessing the
hardware: bta handles PCl and PCl express cards, btu handles USB-2 and USB-3 devices and DtaNw
is the network driver for IP-enabled devices. An auxiliary service (on Windows) or daemon (on Linux)
is running to provide services that should run continuously or that span multiple applications. Collec-
tively, DTAPI, the device drivers, the DTAPI service and the documentation are called the DekTec SDK.
lt's availoble as “Windows SDK” for Windows XP onwards and as “Linux SDK” for Linux 2.6 onwards.

From a programmer’s point of view, DTAPI is composed of a header file (DTAPI . h), to be included in
the application’s source code, and a library file, to be linked to the application’s executable. DTAPI is
also available as .NET assembly.

1.2. Documentation Overview

The table below shows the documents describing DTAPI.

Document Description

DTAPI Reference — Overview and Data Formats This document. Overview of DTAPI and definition
of data formats.

DTAPI Reference — Core Classes Reference for the core classes and methods in
DTAPI, mainly the device and channel classes.

DTAPI Reference — Advanced Demodulator API Reference for the advanced demodulator classes
and structures in DTAPI.

DTAPI Reference — DekTec Matrix API Reference for real-time processing of uncom-
pressed audio and video with the DekTec Matrix
API (part of DTAPI).

DTAPI Reference — Encoder Control Reference of the DTAPI classes for controlling au-
dio- and video encoding hardware.

DTAPI Reference — Multi-PLP Extensions Reference for the multi-PLP ATSC 3.0, DVB-C2,
DVB-T2 and ISDB-Tmm modulator classes in
DTAPI.

DekTec SDK - Revision History List of changes for each release of the Win-

dows/Linux SDK since the May2012 SDK release.

1.3. DTAPI Object Model

DTAPI consists of a collection of C++ classes. Some classes represent hardware functions, others
represent control parameters. The hardware is controlled and managed by invoking methods on
DTAPI objects. The core classes of DTAPI are DtDevice, DtInpChannel and DtOutpChannel.

DTAPI Manual
Overview and data formats .E n m

A DekTec device is represented by a DtDevice object. An application that wants to interact with a
device first ‘aftaches’ a DtDevice object to the hardware. To build an inventory of DekTec devices in
the system, the btDevice class is supplemented by a global function ptapibeviceScan.

Figure 1 illustrates DTAPI in action. The application interacts with DTAPI objects, which in turn com-
municate with the hardware through a device driver.

Streaming Streaming
gveD OouT IN JveD ouT IN
—— 1 — 1
DtDeviceljH TslnpChannel DtDevicellH TslnpChanrel

<7

TsOutpChannel : TsOutpChannel :

WDM Device WDM Device

Figure 1. Example of DTAPI objects representing two devices.

The 1/O ports on a device are represented by channel objects. Two channel classes are defined:
DtInpChannel for representing an input port and DtoutpChannel for an output port. A network (IP)
port is a special case: a channel object is instantiated for each logical stream. An application attaches
a channel object to an 1/O port by specifying a Dtbevice object and a port number. The core methods
of the channel classes are DtInpChannel::Read for reading data from an input port and
DtOutpChannel: :Write for streaming data to an output port.

1.4. List of Abbreviations and Glossary of Terms

bit string — Sequence of bits. Bit strings are written as a string of 1s and Os within single quote marks,
e.g. ‘1000 0001’. Blanks within a bit string are for ease of reading and have no significance.

bslbf — Bit string, left bit first. Used in bit stream definitions. “Left” refers to the order in which bit strings
are written in this document. “First” refers to the first bit transmitted or received. For example, in ‘1000’
the first bit fransmitted or received is a ‘1’.

channel object — Instance of a C+ + class that represents a physical input or output stream. A user
application streams data in or out of an I/O port by invoking methods on the channel object.

device object - Instance of a C++ class that represents a DekTec device.

DTA-xxx card — Any DekTec PCI or PCIl Express card in the DTA series.

Dta — Name of the device driver for DekTec PCI or PCI Express cards. This device driver is generic: a
single device driver is used for all PCl devices (instead of using one device driver for each device type).

DTAPI - DekTec Application Programming Interface.

DTAPI Manual
Overview and data formats .E n m

Dtu — Name of the device driver for DekTec USB devices. This device driver is generic: a single device
driver is used for all USB devices (instead of using one device driver for each device type).

vimsbf — Unsigned integer, most significant bit first.

VPD - Vital Product Data. Information stored in a PCI device to uniquely identify the hardware and,
potentially, software elements of the device. DekTec devices store VPD in on-board serial EEPROMs.
DTAPI supports methods to read and write VPD items.

1.5. References

- ISO/IEC 13818-1, Information technology — Generic coding of moving pictures and associated au-
dio information: Systems, also known as “MPEG-2 Systems” — Specification of the structure of a
MPEG-2 Transport Stream.

- Recommendation ITU-R BT.656-4. Interfaces for digital component video signals in 525-line and
625-line television systems operating at the 4:2:2 level of recommendation ITU-R BT.601 (Part A).

- ETSIEN 302 769, Digital Video Broadcasting (DVB); Frame structure channel coding and modulation
for a second generation transmission system for cable systems (DVB-C2).

- ETSIEN 302 755, Digital Video Broadcasting (DVB); Frame structure channel coding and modulation
for a second generation digital terrestrial television broadcasting system (DVB-T2).

- ETSI EN 102 773, Digital Video Broadcasting (DVB); Modulator Interface (T2-Ml) for a second gen-
eration digital terrestrial television broadcasting system (DVB-T2).

DTAPI Manual
Overview and data formats .E n m

2. Using DTAPI in your Project
This section describes how to use DTAPI on Windows (§2.1) and on Linux (§2.4).

2.1. DTAPI on the Windows Platform

DTAPI for Windows is available as a static link library and as .NET 4.0 assembly. All DTAPI declara-
tions and definitions are contained in a single C++ header file: DTAPI.h. Each module that uses
DTAPI functionality has to include this file.

2.2. Using the Static Link Library

The static link libraries are available for VC14 (Visual Studio 2015), VC15 (Visual Studio 2017), VC16
(Visual Studio 2019) and VC17 (Visual Studio 2022). For each compiler platform, eight versions of
the library are available.

Library File #bits Run-Time Library Configuration
DTAPIMD.lib 32 multi-threaded DLL (/MD) release
DTAPIMDd.lib 32 multi-threaded DLL (/MD) debug
DTAPIMT.lib 32 multi-threaded (/MT) release
DTAPIMTd.lib 32 multi-threaded (/MT) debug
DTAPI64MD.lib 64 multi-threaded DLL (/MD) release
DTAPI64MDd.lib 64 multi-threaded DLL (/MD) debug
DTAPI64MT.lib 64 multi-threaded (/MT) release
DTAPI64MTd.lib 64 multi-threaded (/MT) debug

The correct version of the DTAPI library is automatically linked to the application. This is accomplished
with pragma directives in DTAPI . h, e.g. “#pragma comment (1lib, "DTAPI64MDd.lib")", embedded
in #ifdef statements.

Automatic linking can be disabled by defining _DTAPI_DISABLE AUTO_LINK in your source code with
a #define before including DTAPI . h. Alternatively, you can define this constant in the Configuration
Properties in the C+ +, Preprocessor Definitions section.

So, to use the static link library of the DTAPI follow these steps:

1. Copy DTAPI.h and the right version(s) of DTAPIxxx.1ib to your project or to a standard location
visible to VC++.

2. Add “#include “DTAPI.h" to each file that uses DTAPI constants and/or functions.
3. Compile your application using compiler settings that match those of the lib file.

Instead of the manual copy it also possible to use a search path to look for the pTapPI.h and
DTAPIXX.1lib files in the WinSDK installation directory, which is typically:

C:\Program Files\DekTec\SDKs\WinSDK\DTAPI

DTAPI Manual
Overview and data formats .E n m

For Visual Studio the WinSDK installer adds two convenience macros':

$(DtapilncludePath), pointing to <installdir>/DTAPI/Include

$(DtapilLibraryPath), pointing to <installdir>/DTAPI/Lib

You can use these convenience macros to update the search path in your project settings:

Add $(DtapilncludePath) to the “Additional Include Directories” in the “C/C++ General”
settings section.

Add $(DtapiLibraryPath)\VC16 to the “Additional Library Directories” in the “Linker Gen-
eral” settings section.

NOTE: add \VC16 to the end of $(DtapilibraryPath) for VS.2019 projects, \VC17 for VS.2022 pro-
jects, etc., to link with the correct version of the DTAPI library.

2.3. Using the .NET Assembly

DTAPINET.d1ll and DTAPINET64.d11 are .NET 4.0 compatible assemblies of DTAPI. To use it you
should perform the following steps:

1.
2.

Make sure the .NET 4.0 SDK has been installed on your system.

Copy DTAPINET.d11 to your project or to a standard location visible to VC# (or other .NET
IDE).

Add a reference to the DTAPINET.d11 assembly to your project.

Add a “#using DTAPINET” statement to the beginning of each source file that uses the classes,
methods, and or constants exported by the DTAPINET assembly.

2.4. DTAPI on the Linux Platform
Using DTAPI in a Linux application is straightforward:

1.

2
3.
4

The

Make sure that DTAPI.h and DTAPI. o are located in a path reachable from your project.
Add “#include DTAPI.h" to each file using DTAPI.

Link the DTAPI . o library file to your application.

DTAPI requires the pthread library, so link this library to your application too.

DTAPI library file is available for different GCC versions. Please refer to the

../LinuxSDK/DTAPI/Bin/ directory.

1

For a multi user PC development environment each user should initially do an installation of the WinSDK to make sure

that the convenience macros are installed for each user.

DTAPI Manual
Overview and data formats .E n m

3. DTAPI Basics

3.1. Attaching to a Device

Programs that use DTAPI first must instantiate a DtDevice object and “attach” it to a hardware device.
This can be accomplished in several ways.

DtDevice: :AttachToType is convenient when the DekTec device type number is known, and the sys-
tem contains a single adapter of the given type.

DtDevice Dvc;
if (Dvc.AttachToType (2145) != DTAPI_OK)
// No DTA-2145 in the system ...

Figure 2. Aftaching a DtDevice object to the hardware based on type number.

DtDevice: :AttachToSerial can be used if the serial number of the device is known.

DtDevice Dvc;
if (Dvc.AttachToSerial (2145000123) !'= DTAPI_OK)
// No card with serial# 2145000123

Figure 3. Attaching a DtDevice object to the hardware based on serial number.

DtDevice: :AttachToSlot can be used if the physical location of a PCl or PCl Express card in the
system is known.

DtDevice Dvc;
if (Dvc.AttachToSlot(l, 3) != DTAPI_OK)
// No card in slot 3 on PCI bus 1

Figure 4. Attaching o DtDevice object to the hardware based on PCl bus and slot number.

For DTEs (e.g. DTE-3100) in DTAPI mode, DtDevice: :AttachToIpAddr can be used:

DtDevice Dvc;
unsigned char IpAddr[4] = { 192, 168, 23, 114 };
if (Dvc.AttachToIpAddr (IpAddr) !'= DTAPI_OK)

// No DTE found at 192.168.23.114

Figure 5. Attaching a DtDevice object to the hardware based on IP address.

A more sophisticated application creates an inventory of DekTec devices, with global function
DtapiHwFuncScan or DtapiDeviceScan, and lets the user configure which device is to be used.

DtHwFuncDesc HwFuncs[10];
int £, NumberOfHwFuncs;
: :DtapiHwFuncScan (10, NumberOfHwFuncs, HwFuncs);

for (£=0; f<NumberOfHwFuncs; f++)
if (HwFuncs[f].m ChanType & DTAPI_CHAN OUTPUT)
break;

if (f == NumberOfHwFuncs) { // No output card }

DtDevice Dvc;
Dvc.AttachToSerial (HwFuncs[£f] .m_DvcDesc.m_Serial);

Figure 6. Attaching to the first device with an output port.

After all operations have been completed, the Dtbevice object may be detached from the hardware
with method pDetach.

DTAPI Manual
Overview and data formats .E n m

3.2. Attaching to a Channel

Before you can stream data into or out of a DekTec device, two objects must have been instantiated
and attached to the hardware:
¢ A DtDevice object (§3.1);
¢ A channel object: btInpcChannel for streaming data from an input port into your application,
or DtOutpChannel for streaming data to an output port.

The channel object is attached to the hardware with the channel’s attachToPort member function.
The first parameter of this function is a pointer to the Dtbevice object that hosts the channel. The
second parameter identifies the port number.

DtDevice Dvc;
// Code to attach to the device hardware goes here

DtOutpChannel Outp;
if (Outp.AttachToPort(&Dvc, 1) != DTAPI_OK)
// Error-handling code

DtInpChannel Inp;
if (Inp.AttachToPort(&Dvc, 2) !'= DTAPI_OK)
// Error-handling code

Figure 7. Attaching o DtOutpChannel and a DtInpChannel object to the hardware.

Just like device objects, DtoutpChannel and DtInpChannel objects should be detached from the hard-
ware after all operations on the channel have been completed.

3.3. Initialising a Channel

After attaching to the hardware, and before streaming can commence, the channel must be initialized.

Port type Channel object Initialization

DVB-ASl input |DtInpChannel |SetRxMode sets the packet size of packets stored in the re-
ceive FIFO.

DVB-ASI output |DtOutpChannel |SetTsRateBps sets the output bit rate.
SetTxMode sets the packet size and burst- or continuous
mode.

IP input DtInpChannel |SetIpPars sets the IP reception parameters, primarily the
IP source address.

SetRxMode sets the packet size of packets stored in the re-
ceive FIFO.

IP output DtOutpChannel |SetIpPars sets the IP transmission parameters, primarily
the IP destination address.

SetTsRateBps sets the output bit rate.

SetTxMode sets the packet size and burst- or continuous
mode.

3.4. Receiving Data

This section considers the actual reception of data (usually a Transport Stream) from an external source
to your application. The core of an elementary reception program is shown in Figure 8. This code
assumes the following:

DTAPI Manual
Overview and data formats .E n m

¢ Device object bve and channel object Inp have been attached to the hardware.
e The receive FIFO is empty and receive mode has been initialized.
e ProcessData(DataBuffer, NumBytes) is the function that processes the data.

e StopCondition() is a user-supplied function to break out of the reception loop.

// PRE-CONDITION: Dvc and Inp have been attached to the hardware
char DataBuffer [BUFSIZE];

// Signal the hardware to start receiving data into the receive FIFO
Inp.SetRxControl (DTAPI_RXCTRL RCV) ;

// Main loop

while (!StopCondition())

{
Inp.Read (DataBuffer, BUFSIZE) ;
ProcessData (DataBuffer, BUFSIZE) ;

}

Figure 8. Minimal program for receiving data from an external data source.

The code is straightforward. First receive mode is set to ‘Receive’ (DTAPI_RXCTRL_RcV), which instructs
the hardware to start storing data in the receive FIFO. In the main loop, Inp.Read sleeps until BUFS1ZE
bytes are received. The main loop alternates between reading data and processing the data, until the
stop condition becomes true.

The following factors should be considered to achieve optimal results:

- The buffer size (constant Burs1zg) should not be chosen too small. Every data transfer from the
receive FIFO to the buffer in host memory incurs non-negligible overhead for setting up a DMA
transfer.

A reasonable minimum buffer/transfer size is 4096 bytes. No maximum size exists; the buffer size
may very well be a few megabytes.

- The number of bytes returned by method Read always is a multiple of 4. It is not guaranteed that
the data aligns to Transport-Packet boundaries, even if the buffer size is a multiple of the packet
size. The processing software should always start with a synchronization stage.

- If using SDI, the ReadFrame function can be used instead of the Read function to read the complete
SDI frame at ones. The BUFSIZE must be the size of a complete SDI frame.

3.5. Transmitting Data

Transmitting data to an output is somewhat more involved than receiving data. The core of a minimal
program that transmits data is shown in Figure 9. The code assumes the following:

- Device object bve and channel object outp have been attached to the hardware.
- The transmission parameters have been initialized.

- GetData(DataBuffer, NumBytes) is the function that generates data bytes to be transmitted.

DTAPI Manual
Overview and data formats

deklec

The first part of the code builds an initial load in the transmit FIFO before actual transmission begins.
Hereto transmission control is set to HOLD, which enables DMA to the fransmit FIFO on the device but

keeps transmission disabled.

// PRE-CONDITION: Dvc and Outp have been attached to the hardware
// Transmission parameters have been initialized

// Build initial load in transmit FIFO
Outp.SethControl(DTAPI_TXCTRL_ﬂOLD); // Start in HOLD mode
char DataBuffer [BUFSIZE] ;
for (int Load=0; Load<INITIAL LOAD; Load+=BUFSIZE)
{

GetData (DataBuffer, BUFSIZE) ;

Outp.Write (DataBuffer, BUFSIZE) ;
}

// Go to SEND mode: this starts the transmission of data
Outp.SetTxControl (DTAPI_TXCTRL_SEND) ;

// Main loop

while (!StopCondition())

{
Outp.Write (DataBuffer, BUFSIZE) ;
GetData (DataBuffer, BUFSIZE) ;

}

Figure 9. Minimal program to transmit data.

When the transmit FIFO contains its initial load, actual transmission is started by setting transmission

control to SEND. The main loop then supplies additional data to the transmit FIFO.

The following factors should be considered to achieve optimal results:

- The buffer size (constant Burs1zE) should not be chosen too small. Every data transfer to the trans-

mit FIFO incurs overhead for setting up a DMA transfer.

- The initial load written to the transmit FIFO (IN1TIAL_LOAD) should not be too small either, to
prevent an early underflow of the transmit FIFO in the main loop. A value close to the maximum

FIFO size is recommended.

The initial load cannot be larger than the size of the transmit FIFO: this would cause an application

|II

“stall”, because outp.wWrite will sleep forever.

3.6. Example Code for a Simple Stream Player

Figure 10 shows the code of a simple but fully functional command-line stream player that is capable
of transmitting a TS file to DVB-ASI output port #1 of a DTA-2145. The filename and bit rate at which

to play out the file can be specified as command-line arguments.

The example exploits good-old “stdio” functions for reading file data. By using a relatively large buffer,

performance is more than adequate.

Obviously, this example is just a first step towards a production-quality streamer application. With
respect to DTAPI, one obvious improvement would be to check the return code for every DTAPI call

and add the corresponding error-handling code.

DTAPI Manual
Overview and data formats

deklec

{

// Command-line program TsOut to transmit a TS file out of a DTA-2145

#define BUFSIZE 0x10000 // 64kB buffer size
#define INITIAL LOAD (7*%1024%1024) // 7MB initial load

#include “DTAPI.h”
#include <stdio.h>

int main(int argc, char* argv[])

if (argc !'= 3) {
printf (“Usage: TsOut bitrate tsfile\nQuitting...\n”);
return -1;
}
FILE* fp = fopen(argv([2], “rb”);
if (fp == NULL) {
printf(“Can’t open ‘%s’ for read\nQuitting...\n”, argv[2]);
return -2;
}
// Attach device and output channel objects to hardware
DtDevice Dvc;
if (Dvc.AttachToType (2145) != DTAPI_OK) {
printf (“No DTA-2145 in system. Quitting...\n”);
return -3;
}
DtOutpChannel TsOut;
if (TsOut.AttachToPort(&Dvc, 1) != DTAPI OK) {
printf (“Can’t attach output channel.\nQuitting...\n”);
return -4;
}
// Initialise bit rate and packet mode
TsOut.SetTsRateBps (atoi (argv[l])) ;
TsOut.SetTxMode (DTAPI_TXMODE 188, DTAPI_TXSTUFF_MODE ON) ;

// Build initial load in Transmit FIFO
TsOut.SetTxControl (DTAPI_TXCTRL HOLD) ;
char Buf[BUFSIZE];
int Load = 0;
int NumBytes = fread(Buf, 1, BUFSIZE, fp);
while (Load<INITIAL LOAD && NumBytes!=0) {
TsOut.Write (Buf, NumBytes) ;
Load += NumBytes;
NumBytes = fread(Buf, 1, BUFSIZE, £fp);

// Start transmission
TSOut.SethControl(DTAPI_TXCTRL_SEND);

// Main loop
while (NumBytes != 0) {

TsOut.Write (Buf, NumBytes) ;

NumBytes = fread(Buf, 1, BUFSIZE, £fp);
}

return O;

Figure 10. Complete command-line application to stream a file with the DTA-2145.

DTAPI Manual
Overview and data formats .E n m

4. Capabilities and 1/O Configuration

DTAPI supports mechanisms to discover the capabilities of DekTec I/O adapters programmatically
and configure the hardware dynamically.

4.1. Introduction
A DTAPI capability is a constant that identifies a characteristic or feature of a physical port. For exam-
ple, bTAP_cap asI indicates that a port supports ASI.

e DTAP_CAP_ASI doesn’t say whether ASI reception and/or ASI transmission are supported, other capabilities are
used for that.

The global DTAPI function : :DtapiHwFuncScan scans the hardware and creates a hardware function
descriptor (DtHwFuncDesc) for each port. Capabilities are encoded in member m Flags of data type
Dtcaps. Capabilities can be OR-ed together.

Use the following code snippet to test for a certain capability:

if ((HwFuncDesc.m Flags & DTAPI_CAP ASI) != 0)

{
// Port supports ASI

}

Figure 11. Code to test whether a port has capability DTAPI_CAP_AST.

I/O configuration is the process to dynamically configure 1/O ports from software. You can use the
SetIoConfig method to set the I/O configuration of a port, and GetIoconfig to read it back.

4.2. Capabilities

Capabilities are organized in groups, capabilities and sub-capabilities.

Capability Group A set of capabilities applying to comparable characteristics.
For example, capabilities in group 10sTD all apply to the I/O stand-
ards supported by a physical port.

Capability A constant that identifies a characteristic of a port.
For example, DTAPI_cap HDSDI, a member of group 10STD, indicates
that the port supports HD-SDI.

Sub-Capability A constant that identifies a sub-characteristic of a port.
For example, sub-capabilities of bTaAPI_cap_HDSDI include
DTAPI_CAP 1080150, DTAPI_CAP 1080I59 94, efc.

The DekTec SDK contains the following documentation on capabilities.

Caplist.xlsx A spreadsheet that lists the capabilities, sub-capabilities and attributes
supported by each DekTec I/O adapter.

DTAPI.h This header file contains a complete list of all available capabilities in
the form of pTAPI_caP_xxx definitions.

DTAPI Manual

Overview and data formats

deklec

There are two main categories of capabilities: I/O capabilities and standard capabilities.

I/O Capability

Capability that is linked to I/O configuration: If an /O capability is
supported, SetIoConfig can be used to enable the port feature.

Standard Capability |These capabilities indicate whether a certain function is sup-ported by

the port and are unrelated to 1/O configuration.

4.2.1.1/0O Capability Groups

I/O capabilities describe features of physical 1/O ports. The main 1/O capability groups are listed in
the table below. Capabilities in group BooLIO are present, or not. Capabilities in the other 1/O capa-

bility groups are mutually exclusive: only one of them can be active at a time.

Group Description

BOOLIO Boolean 1/O capabilities that, if present, indicate that a feature is sup-
ported. Capabilities in this group include FAILSAFE, FRACMODE, GENLOCKED,
GENREF and SWS2APSK.

IODIR The direction of the signal flow: INPUT, OUTPUT or DISABLED. The sub capa-
bilities in this group indicate how a physical port is connected to the input
or output channel. This encodes features like double buffering.

IOSTD The 1/O standard used on this port. Capabilities in this group include:
3GSDI, ASI, DEMOD, GPSTIME, HDSDI, IP, MOD, PHASENOISE, SDI and SPI.

PWRMODE High-quality modulation (MoDHQ) or low-power mode (LOWPWR).

RFCLKSEL Modulator RF clock - Selection of reference source: internal (REXCLKINT) or
external (REXCLKEXT).

TSRATESEL Capabilities in this group selects between ways to generate the transport-
stream rate: EXTTSRATE, EXTRATIO, INTTSRATE Or LOCK2INP.

For a complete list of I/O capabilities, please refer to caprList.xlsx.

4.2.2. Standard Capability Groups

The main standard capability groups are listed in the table below.

Group Description

DEMODPROPS General demodulator properties: ANTPWR (antenna power), LNB and RX_ADV
(advanced demodulation).

FREQBAND Frequency band supported: LBAND, VHF, UHF.

IOPROPS Miscellaneous capabilities that do not fit elsewhere, e.g. TRPMODE (transpar-
ent mode)

MODSTD Modulation standards, all starting with Tx_: Tx aTsc, TX_DVBT2, efc.

MODPROPS Other capabilities related to modulation, e.g. cM (channel simulation).

RXSTD Receiver standards, all starting with RX_: RX_ATSc, Rx_DVBT2, etc.

For a complete list of standard capabilities, please refer to capList.xlsx.

DTAPI Manual
Overview and data formats .E n m

4.3. 1/0 Configuration

4.3.1. SetloConfig and GetloConfig
Use the setIoConfig to set the I/O configuration of a port, and GetIoconfig to read it back.

On Windows, I/O configuration settings are persisted in the registry. After a power down and a reboot,
the 1/O configurations will be automatically restored to the last-applied settings.

On Linux, no such mechanism exists and the application itself is responsible for configuring the ports.
Example

On many DekTec adapters, ports can be configured in ASI or in SDI mode. The code below configures
a port in ASI mode:

if ((HwFuncDesc.m Flags & DTAPI_CAP_ASI) != 0)
Dvc.SetIoConfig(Port, DTAPI_IOCONFIG_IOSTD, DTAPI_IOCONFIG ASTI) ;

Figure 12. Code to set the I/O configuration of a port to ASI.

4.3.2. Relation to Capabilities

SetIoConfig and GetIoConfig have four parameters that are closely linked to capabilities:

Parameter Description
Port Physical port number.
Group Same as capability group.
Only I/O capabilities have a corresponding I/O configuration group.
Value Capability.
SubValue Sub-capability.
Example

An output port that can be configured in “double-buffered” mode (output signal available on two
ports) has capability pbTaPI_cap_ouTpuT and sub-capability DTaAPI_cap DBLBUF, both located in the
IODIR group.

Dvc.SetIoConfig(Port, DTAPI_IOCONFIG_IODIR, // Group
DTAPI_ IOCONFIG_OUTPUT, // Value
DTAPI_IOCONFIG_DBLBUF) ; // Subvalue

Figure 13. Code to configure a port for double-buffering.

For a complete list of I/O configuration groups, values and subvalues, see the bTAPI_I0CONIG XXX
constants in DTAPI.h

4.3.3. SetloConfig Variants

Two setIoConfig functions are defined, one at device level and one at channel level. The I/O con-
figuration of a port at device level can only be changed when the port is not used (no channel object
attached). Some, but not all, I/O configuration changes can also be performed at channel level. This
can only be done when the channel object is attached to the hardware.

In some cases, there are dependencies between 1/O ports on the same DekTec device. The driver
validates whether the 1/O configuration of multiple ports is consistent with each other. For example,

DTAPI Manual
Overview and data formats .E n m

on the DTA-2137 only one port can be set fo DTAPI_IOCONFIG_SWS2APSK, otherwise an error is re-
turned.

To simplify configuration changes that must be done in a specific order, and to prevent temporary
invalid configurations, a “transaction” variant of setIoConfig is available. With this variant the 1/0O
configuration settings only needs to be valid before and after the complete transaction, not after each
individual configuration action.

DTAPI Manual
Overview and data formats .E n m

5. DTAPI Concepts

5.1. Getting Statistics

DTAPI uses class Dtstatistic to represent measurements and statistics. This class is typically used
for receivers. A summary of its declaration is shown below. Refer to DTAPI . h for the full definition.

struct DtStatistic
{
DtStatistic();
DtStatistic(int StatisticId); // Constructor with DTAPI_STAT xxx initialization

enum StatValueType

{
STAT VT_UNDEFINED, STAT VT BOOL, STAT VT DOUBLE, STAT VT_INT

};

DTAPI_RESULT m Result; // Result of retrieving the statistic
int m _StatisticId; // Identifies the statistic: DTAPI_STAT XXX
StatValueType m ValueType; // Value type of statistic: STAT VT XXX
union {
bool m ValueBool; // Value if value type is STAT VT BOOL
double m ValueDouble; // Value if value type is STAT VT DOUBLE
int m Valuelnt; // Value if value type is STAT VT INT

};
DTAPI RESULT GetName(..), GetValue(..), SetId(..);
};

Statistics are identified by their ID (m_statisticId). See DTAPI.h for a list of DTAPI_STAT xxx identi-
fiers. The functi